
Critical dynamic response of the dilute antiferromagnetic chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 1555

(http://iopscience.iop.org/0305-4470/17/7/023)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) 1555-1563, Printed in Great Britain 
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Received 5 December 1983 

Abstract. The transverse dynamic response of the dilute classical Heisenberg antiferromag- 
netic chain is calculated near the percolation threshold as k -+ 0 and k -+ T. In the critical 
limit the universal dynamic structure function, which is calculated in closed form, exhibits 
dynamic scaling with exponents z =  1, vT= 1. This function displays the crossover from 
spin wave ( k  - n)(, 3 1 to hydrodynamic ( k  - a)(,". 1 response. The relevance of the 
results to the experimental situation is discussed. 

1. Introduction 

We give an exact calculation of the transverse contribution to the critical dynamic 
response of the dilute classical antiferromagnetic Heisenberg chain in the limit of 
diverging percolative correlation length tp (Essam 1980) and zero temperature. Static 
dilution-induced critical phenomena have long been of interest but there are relatively 
few exact results in the field of critical dynamics of dilute systems (Korenblit and 
Shender 1978, Harris and Kirkpatrick 1977, Kirkpatrick 1979, Stinchcombe 1983a). 

This paper obtains the response by carrying out the configurational average over 
individual chain segments (Stinchcombe and Harris 1983, Harris 1984, Ogadaki and 
Lax 1980). Each contribution to the average is calculated using the standard linear 
spin wave approximation (Anderson 1952). Numerical calculations on the same system 
have been performed by McGurn and Thorpe (1983) while exact results are available 
for instantaneous correlations (Fisher 1968, Thorpe 1975). The results of our calcula- 
tion exhibit dynamic scaling (Halperin and Hohenberg 1969, Hohenberg and Halperin 
1977) and are in broad agreement with recent experiments (Boucher et al 1978 and 
Endoh et a1 1979,1981). 

The method of this paper is to solve the equations of motion for individual chain 
segments with free boundary conditions in a manner similar to that used for the simpler 
ferromagnetic ease by Stinchcombe and Harris (1983). The responses of individual 
segments are summed with appropriate weights to give the configurationally averaged 
Green function in closed form to leading order in 6;'. Critical behaviour occurs near 
the percolation threshold in the limit k + T in contrast to the ferromagnet where 
criticality occurs at the centre of the Brillouin zone. 

In the remainder of § 1 we set up the model and make some comments on its 
validity. In § 2 the model is solved in the continuum limit. A discussion follows in § 3. 
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We start with the Hamiltonian for the bond diluted antiferromagnetic chain in the 
presence of a site dependent transverse field h 

The exchange coupling Jj j  is a random variable with the probability distribution 

P( Jil l  = (1 -P)S( J r , )  + p a (  J i j  - J )  (1.2) 

where p is the bond concentration. 
Even in one dimension, for large spin magnitude S, linearised equations of motion 

can be used provided the temperature is so low that the thermal correlation length tT 
(proportional to temperature T )  satisfies tT >> tp, ( k  - r)-l. Although thermal and 
quantum fluctuations destroy long range order there are long regions of correlated 
spins in which a local z axis can be defined about which spin wave precessional dynamics 
occur for (k  - T ) - ~  << tT. 

In the linearised formalism, the dispersion curve in the pure limit is given by 

w = 2Jlsin kl. (1.3) 

As we intend to sum over an ensemble of chain segments we need the probability 
of a given site belonging to an n bond chain: 

P( n )  = (1 - p)2p".  (1.4) 

The percolative correlation length tp is the characteristic length controlling the 
behaviour of the dilute system and is given by 

tp = /In P I - ' .  (1.5) 
Using standard methods the equations of motion derived from (1.1) are 

( SJ,,, + 1 + SJ,, ,- 1 + ( - 1 ) u ~ w  ) s; = - Sh ; - SJ,, I+ 1 s:+ 1 - SJ,, ,- 1 S 7- 1 (1.6) 

where a, specifies the sublattice of the Ith spin and can equal 1 or 2. S: is the usual 
combination (S;=S;+iS:) of the transverse spin components at the Ith site. 

We define the Green functions Gi.7,) on an n bond chain segment by 

It follows that the average transverse dynamic structure function and hence the 

X(k,w,p)= - ImG(k ,w+is ,p )  (1.8) 

neutron cross section is given by 

where 

Gj,7!(w)exp(ik(l-lf)) (1.9) 

(. , .) here denotes a configurational average over all bond configurations. 
From dynamic scaling arguments (Halperin and Hohenberg 1969) and the result 

for the ferromagnet (Stinchcombe and Harris 1983) we expect the result to display 
the dynamic scaling form 

F ( q t p ,  W 2 )  (1.10) *( k,  0, p )  = q - ( 2 - % + 2 )  

(where q = k - T )  in the critical limit tp-+ CO with q + 0, w + 0. 
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This is confirmed in the present calculation which gives the functional form of 
F(qtP, wq-') and the critical exponents z and T ~ .  The relevance of the result to 
neutron scattering experiments is mentioned. The details of the theory are given in 
the next section which begins with an outline of the sequence of steps in the 
development. 

2. Theory 

We now solve the model which was introduced in 0 1. Starting from the equations of 
motion (1.6), we find the equation obeyed by the Green functions (1.7) which are 
solved, in the limit appropriate to criticality, by going to a continuum formalism. These 
Green functions can then be averaged to give the response in closed form (2.26). 

To calculate the Green functions, G of (1.7) we decimate the equations of motion 
(Marland 1978, Goncalves da Silva and Koiller 1981, Stinchcombe 1983b, Stinchcombe 
and Harris 1983) so that the motion of a spin on a sublattice is given in terms of other 
spins on the same sublattice. 

By considering the equation of motion of a linear combination of the GU, it will 
be seen that terms augment or nearly cancel each other in the two limits k + 7~ 

(criticality) and k + O  (where the field becomes an irrelevant variable and ceases to 
couple to the chain). In calculating configurational averages we freely discard Green 
functions, from the ends of chains with an odd number of atoms, which do not fit into 
our grouping of terms. In the limit of diverging tP these contribute a vanishing 
proportion of the response. 

We begin by considering a particular segment of the diluted chain consisting of n 
bonds joining sites 1 with 0 zs 1 zs n. 

Rewriting (1.1) for an atom on the interior of such a chain segment we obtain 

(2 + (- l)"l(5)St = - h;  - ST-1- st+l (2.1) 

where 

(5 = o / J S  and h+ = h'/ J. 

The corresponding equation for the spin at the left-hand end site I = 0 of the segment 
is 

(1 + (- l ) " O i ) S , '  = -ho' - s:. (2.2) 

An analogous equation applies at the other end of the chain. 
Performing the decimation by eliminating S:-l and S:+l from (2.1) gives the 

equations of motion for interior sites: 

(2  - (5 2 ,  s: = - (2 - (- 1)"JG)h : + h :-1 + h :+1 + s:-* + s:+2. (2.3) 

These equations have to be solved subject to boundary conditions for the end spins 
of the decimated system which can be obtained as follows from (2.2): we eliminate 
S:  from (2.2) to give one form of boundary condition: 

(1 + (-1)"0(5)S,' = - (2 - (-l)"o(5)h,+ + h: + s; + O( 0 2 ) .  (2.4) 
Another form is obtained by eliminating S,' from (2.2) 

( 1 + (- 1) (IOW) s: = (2 - (- 1 ) " 0 W ) f i ~  - h ;( 2 + (- 1) "06) + h; + s: + O( 0 2 ) .  (2.5) 
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For chains with odd numbers of atoms we also find the result, obtained in a similar 
manner, 

(1 + ( - l ) " ~ & i ) S ~ =  - (2- 3(-l)"o&i)h: 

+ (2-(-l)"oG)ht- (2-  (-l)%)h:+h:+ S , ' + 0 ( w 2 ) .  (2.6) 

The linear combination of Green functions used in the calculation will be designated 
Hi,:;,,, and is defined by 

H'"' (G!,Y!m +e-ikG!,Yim+l) +e'k(G!:\,r+m +e-ikG!:\,i+m+i). (2.7) 

This makes it possible to rewrite (1.9) as, 
m 

G(k ,w,p )=  2 (1-pI2pn G!;)exp(ik(l-l')). 
n =O 1,l' 

(2.8) 

cc 

(2.9) = ( l - p )  2 p n 1  - ~ ( G j , 7 ' + G j , Y ~ " ) e x p ( i k ( l - 1 ' ) ) ( 1 + 0 ( ~ , ' ) )  
n=O 2 1.1' 

cc n+1 

= 2 4 ( 1 - ~ ) ~ p "  (H$+,)exp(-ikm) 
n=O ) = n  m e v e n  

where 
n-m 

I even 
(H!,7im) = H!,71m for n even 

n-m-1  

= Hj,7im for n odd. 
1 even 

(2.10) 

(2.11) 

In writing (2.11) we have discarded a vanishing proportion of Green functions as 
mentioned above. 

The next step in the development will be to find the equations of motion of the 
HI,:! then to go to a continuum limit by replacing difference equations (to be obtained 
from (2.3)-(2.6)) by differential equations, and summations (2.10)-(2.11) by integrals. 

We now suppose the field to which the response is required is periodic in space 
with wavevector k (h:=exp(-ikl)h:). For an n-bond segment in such a field we 
find from (1.7),  (2.7),  

S ;  = C (Gj.7) + e-ikG!,:)+l) h: e-'k' 
1' even 

This implies 

T21 = S:, +e'kS:l+l = 2 H$'$ e-ik''h: 
I '  even 

(2.12) 

(2.13) 

The natural length of the system is tP defined in (1.5),  which we now consider to be 
large. Then it is convenient topefine the space variables x, y ,  L and reduced frequency 
and wave vector labels 6, E according to 
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For each of the limiting cases k near T and k near zero a continuum description 
(x, y, L continuous) can then be obtained by taking appropriate limits in which t P + m  
with k" or held finite, and w + O  to keep 6 finite. 

Correct to leading order in ti1, we have 

TI - 2 + T,+ 2 - 2 T, + ( 4/ 6;) ( a2/ a Y ( T (  Y ) 1 > (2.15) 

so that (2.3) becomes 

(~ '+ (4 /5~) (a2 /ay2) )T(  y) =4(1-cos k )  e-i';Yh: k + r r  

= 4( 1 -cos k )  e-iByh: k + O .  (2.16) 

In the two limits k +  T,  0, (2.16) together with (2.13) then lead to 

(G2+f?/ay2)(H'L'/[p)( y, X ;  k +  T )  =(4/J )S(  y - X )  (2.17) 

(G + a'/ ay2)  ( H'L'/ 5,) ( y, X ;  k + 0) = -( 1/ 6;) ( a2/ay2) S ( y - x)/ J. (2.18) 

By considering the same continuum limit for the boundary conditions derived from 
(2.4)-(2.6) it can be shown that for both limits k + T, 0 the field terms actirlg on the 
end of the chain contribute a vanishing proportion of the response as 6, diverges. 
Hence to leading order 

aH'L'/ay = when y = 0, L 

which we rewrite as 

aH(L) / ay  = v;H'") y = o  

= TGH'~' y = L  (2.19) 

where 7, v take on the values i.1 as required. (Depending on whether the segment 
ends on an up or a down sublattice.) 

With these boundary conditions, (2.17) and (2.18) have the solutions 

1 
-Hlfil(x, y; k +  T )  
5, 

2(7i  exp(iG(x -2L)) +exp(-iGx))( vi exp(iGy) +exp(-i&y)) 
J (  v -  7 exp(-2iGl))G 

2(7i exp(i&( y-2L)) +exp(-iGy))( vi exp(iGx) exp(-i&x)) 
J( v- 7 exp(-2iGL))G 

( Y  < x )  

( Y  > x)  

- - 

- - 

(2.20) 

(2.21) 

In the experimental situation there will always be some coupling between neighbour- 
ing chains so that at low temperatures although the dynamics can be considered as a 
one-dimensional problem there will be a three-dimensional ordering of the system 
and individual chain segments will be correlated. In such a system and also in an 
ensemble of uncorrelated segments it is necessary to average over v and 7 which 
independently take on the values +1. This leads us to define 

(2.22) 
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which takes into account chains with n both odd and even arising in the sum over j 
in (2.10). The result is 

Inserting this into the continuum limit of (2.10) and using (1.9) we find the following 
expression for the average transverse response 

x = -1m G ( k ,  w,  p )  = -1m 5 / 4  jOm dL e-L loL dz  cos k; IoL-' E?(L)( y, y + Z) dy P 

(2.24) 

dL Im 2 1 1 O5 cos 24L-cos(4 + l ) L  
= - 25 f:[ ( k " 2 -  4 2 )  +; (R I, e-L sin 24L 

-L cos 2;L -cos( 4 - k") L 
sin 2;L 

(2.25) 

Completing the integrals we arrive at the following result for the average response in 
the two limits k +  T ,  k + O :  

x(L, 4, 5,; k + T )  

coth ~ /4 ; ( l - s in  k"~/2;) 
(;-k")2(cosh .rr/24-sin /&/2;) 

coth ~ / 4 & ( 1  +sin kx /24)  
(4 + k')'(cosh ~ / 2 ;  +sin l ~ / 2 4 )  

+ (2.26) 

(2.27) 

In the critical limit where 5, diverges and where k - T and w vanish but where k' 
and 4 remain finite the result (2.26) displays the dynamic scaling form (1.10) with 
z = 1, qT = 1, and with the following explicit form for the universal scaling function 

T 
F ( a ,  b) =- 

2a2b2J  
1 - sin TJ/ b 

.rrJ/2ab( (b/2J-l)'(cosh TJjab-sin TJ jb )  

1+sin T J / b  
(1 + b/2J)2(cosh TJ/ab+sin .nJ/b) 

+ (2.28) 

where a = ( k -  .rr)tp, b = w ( k - ~ ) - ' .  
As k" varies from 0 to 00 this function describes the crossover from a broad 

hydrodynamic response to a sharp spin wave peak at an energy given by the pure 
dispersion curve (1.31, as will be discussed in the next section. 

3. Discussion 

The evolution of the scaling function F (  a, b) as ( k  - T ) [ ,  varies is shown in figure 1. 
For ( k  - r)tPS 1 the scattering is dominated by the broad hydrodynamic response 
which moves down in reduced frequency ( w / ( k - n ) ' )  as (k- .rr)tp increases. As 
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Figure 1. Plot of the universal scaling function F( ( k  - T ) & ,  w (  k - T) - ' )  for the transverse 
response of the dilute antiferromagnetic classical chain. Here k'= ( k  - a)t,, z = 1, T~ = 1. 
For large k' the response is dominated by the spin wave peak at the same energy as is 
found in the pure system. For k' s 1 the response is dominated by the broad hydrodynamic 
contribution. 

( k  - n)[,  increases further the spin wave response becomes dominant with the hydro- 
dynamic contribution continuing to move to lower reduced frequencies. The spin wave 
peak is predicted to remain at the same energy as the response from a pure sample 
though it is broadened by the finite magnon lifetime. 

For intermediate ( k  - n)t, we see oscillations in the scattering with minima when 

c / G  = ( 4 n  + 1) n # 0. (3.1) 
This can be explained by considering the oscillations set up in the chain segments 

by the probing field h;. For these particular frequencies the 'overlap' (defined in some 
appropriate manner) between the external field and the internal wavefunction will 
vanish forcing the response of the system also to vanish at these points. 

The principal features of the results make contact with the experiments by Boucher 
et a1 (1978) and Endoh er a1 (1979, 1981) who measured the inelastic scattering of 
neutrons from the quasi-one-dimensional antiferromagnet TMMC diluted with copper 
ions. They only found a spin wave peak present when k[,B 2. It was also found that 
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the position of the peak did not move when the concentration of copper ions was 
varied. This is in agreement with what is predicted by the present calculation. 

In figure 2 we reproduce some results and computer simulations from the paper 
of Endoh et a1 (1981). The experimental results show the decrease in intensity as 
( k  - .rr)t, is reduced which has already been noted above for our calculation. The 
computer simulations for ( k  - r)tP = 2.2 and ( k  - T)[, = 3 display the same double 
hump seen in our calculations of figure 1. 

Energy f iw I m e V )  

Figure 2. Experimental results for the site-diluted quasi one-dimensional antiferromagnet 
TMMC (left-hand side; T = 0.36) and computer simulations (right-hand side) (taken from 
the paper of Endoh eta1 1981). The experimental results clearly show a loss in the intensity 
of the spin wave peak as k' decreases. The computer simulations give curves in broad 
agreement with our exact calculation. 

Observation of oscillations predicted in (2.26) is hampered by the strong peak 
centred at w = 0, (see figure 2 ) .  This is largely due to incoherent nuclear scattering. 
We also expect a contribution to this peak from longitudinal two-magnon scattering 
broadened by thermal fluctuations. This response has been considered and can be 
calculated by an extension of the methods used here. 

Of course, our calculation has treated the bond diluted system, while the experi- 
ments are on site-diluted chains. We are therefore led to consider possible differences 
in the leading-order contribution to the response in bond-diluted and site-diluted 
systems. 

Certainly in more than one dimension we expect site-diluted and bond-diluted 
systems to behave differently as the percolation threshold and the local environment 
differ. In one dimension, however, clusters are independent chain segments with a 
probability distribution of chain lengths identical to leading order 6;'. In the case 
considered in this paper where 5, diverges the average response will be the same for 
both the site- and bond-diluted problem. 
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It is to be noted that the exponent T~ is not the same for the ferromagnetic and 
antiferromagnetic systems. We -find 7tF=  1. Stinchcombe and Harris (1983) give 
7; = 2. These exponents characterise the spatial decay of instantaneous transverse 
correlations. As is well known, the ferromagnetic and antiferromagnetic systems are 
in the same static universality class hence the exponent describing the decay of the 
correlation function ( S I  * SI , )  is the same. This correlation function is dominated by 
the longitudinal contribution (S;SF) to which the transverse fluctuation is a less singular 
correction. 

It should perhaps be pointed out that the antiferromagnet is also amenable to 
treatment by a real space scaling method as used by Stinchcombe and Harris (1983) 
and Stinchcombe (1983b). This would probably be the best way to generalise the 
results to higher dimensions. Results for the ferromagnetic system using this method 
are already available (Harris and Stinchcombe 1983). 
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